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ABSTRACT
Background. The extent to which ectomycorrhizal fungi mediate primary production,
carbon storage, and nutrient remineralization in terrestrial ecosystems depends upon
fungal community composition. However, the factors that govern community com-
position at the root system scale are not well understood. Here, we explore a potential
tradeoff between ectomycorrhizal fungal competitive ability and enzymatic function.
Methods. We grew Pinus muricata (Bishop Pine) seedlings in association with ecto-
mycorrhizal fungi from three different genera in a fully factorial experimental design.
We measured seedling growth responses, ectomycorrhizal abundance, and the root tip
activity of five different extracellular enzymes involved in the mobilization of carbon
and phosphorus.
Results. We found an inverse relationship between competitiveness, quantified based
on relative colonization levels, and enzymatic activity. Specifically,Thelephora terrestris,
the dominant fungus, had the lowest enzyme activity levels, while Suillus pungens, the
least dominant fungus, had the highest.
Discussion. Our results identify a tradeoff between competition and function in ecto-
mycorrhizal fungi, perhaps mediated by the competing energetic demands associated
with competitive interactions and enzymatic production. These data suggest that
mechanisms such as active partner maintenance by host trees may be important to
maintaining ‘‘high-quality’’ ectomycorrhizal fungal partners in natural systems.

Subjects Ecology, Environmental Sciences, Mycology, Plant Science
Keywords Niche partitioning, Extracellular enzymes, Mycorrhizae, Tree-fungal mutualism, Pinus
muricata, Mutualism

INTRODUCTION
Ectomycorrhizal fungi (EMF), the belowground mutualistic partners of most of the
world’s temperate tree species, are key regulators of primary production and nutrient
remineralization in terrestrial ecosystems. EMF mediate the transfer of water and nutrients
from the soil to their host trees (Brownlee et al., 1983; Leake et al., 2004) and serve as a
pathway for photosynthetically fixed carbon into the soil community (Talbot, Allison &
Treseder, 2008). These fungi also affect the extent of carbon storage (Averill, Turner & Finzi,
2014; Clemmensen et al., 2015) and the rate of nutrient cycling (Leake et al., 2004; Koide,
Fernandez & Malcolm, 2014) belowground.

The species composition of EMF communities affects these functions. For example,
some taxa utilize distinct foraging strategies, such as the formation of rhizomorphs which
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allow the transport of water and nutrients over long distances (Brownlee et al., 1983;
Agerer, 2001; Agerer, 2006), accumulate relatively high amounts of mycelial biomass
belowground (Hobbie, 2006), and are linked with efficient nitrogen mobilization and low
carbon sequestration (Clemmensen et al., 2015). EMF that form melanized hyphae may be
more tolerant of water stress (Fernandez & Koide, 2013) and resistant to decomposition
(Fernandez & Koide, 2014; Koide, Fernandez & Malcolm, 2014) than other taxa. EMF also
differ in the extent towhich they produce extracellular enzymes that break down soil organic
matter and release nitrogen and phosphorus (Courty et al., 2006; Courty, Franc & Garbaye,
2010; Jones et al., 2010; Tedersoo et al., 2012). Because fungal traits are linked through their
function to ecosystem processes (Koide, Fernandez & Malcolm, 2014; Treseder & Lennon,
2015), understanding the factors controlling ectomycorrhizal community composition on
host tree root systems is of major importance.

While both abiotic (e.g., edaphic environment (Moeller, Peay & Fukami, 2014)) and
biotic (e.g., plant community context (Bogar & Kennedy, 2013; Moeller et al., 2015))
conditions may play a primary role in filtering members of the ectomycorrhizal
community, recent work has highlighted the importance of fungal species interactions
to ectomycorrhizal community assembly (Kennedy, 2010). Competitive interactions, in
particular, may locally structure fungal communities within a host plant’s root system,
leading to competitive exclusion (Villeneuve, Le Tacon & Bouchard, 1991; Kennedy &
Bruns, 2005; Kennedy, Peay & Bruns, 2009) or spatial segregation (Taylor & Bruns, 1999;
Pickles et al., 2012). Over longer time scales, such competitive interactions may contribute
to the successional patterns observed within ectomycorrhizal communities (Mason et al.,
1983; Visser, 1995; Nara et al., 2003), likely in part through a tradeoff between colonization
and competitive abilities (Lilleskov & Bruns, 2003; Kennedy et al., 2011).

Some functional traits such as foraging type (Peay, Kennedy & Bruns, 2011; Clemmensen
et al., 2015) and propagule persistence (Baar et al., 1999; Taylor & Bruns, 1999) are
associated with successional stage; however, it is not clear whether these differences in
functionality result in differing competitive abilities. Here, we tested for a tradeoff between
competitiveness and nutrient acquisition ability (measured as enzymatic activity) across
three different ectomycorrhizal fungal genera. By holding host tree age, inoculum potential,
and environmental conditions constant, we experimentally tested three hypotheses.

First, we hypothesized that a dominance hierarchy exists among the three fungal taxa
used in our study, Rhizopogon occidentalis, Suillus pungens, and Thelephora terrestris. Based
on prior greenhouse experimental work, we expected R. occidentalis to be competitively
dominant to S. pungens (Kennedy et al., 2007; Kennedy et al., 2011), and we expected
T. terrestris, an aggressive seedling colonizer (Mason et al., 1983; Velmala et al., 2013), to
be competitively dominant to both these species. Second, we expected this dominance
hierarchy to be inversely related to fungal enzymatic function. We based this hypothesis
on the rationale that fungi experience an energetic tradeoff: they can either produce
metabolically costly extracellular enzymes, or they can invest in chemical defenses against
their competitors. Third, we hypothesized that this tradeoff would impact host tree
seedling growth: seedlings would accrue the highest biomass when associating with the
least dominant, most highly enzymatically functional fungi.
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MATERIALS AND METHODS
Experimental design
We worked with Pinus muricata (Bishop Pine) and three ectomycorrhizal fungi
(Rhizopogon occidentalis, Suillus pungens, and Thelephora terrestris) known to associate
with this tree in its native range (Peay et al., 2007). We selected these fungi because they are
among the most common and abundant in early successional pine forests in Point Reyes
National Seashore (PRNS), where we worked (Peay et al., 2007). We tested the competitive
abilities, enzyme expression levels, and effects on seedling growth of these fungi grown in
isolation and in competition.

P. muricata seeds were obtained from PRNS. Prior to the start of the experiment,
seeds were surface sterilized and germinated in autoclave-sterilized perlite. Within 7
days, germinated seedlings were transplanted into conetainers filled with a 50:50 mix of
autoclaved sand and soil fromPRNS. Spores from each of the three EMFwere obtained from
sporocarps collected at PRNS. Sporocarps were incubated spore-side down overnight on
foil at room temperature. Spores were collected by washing the foil with sterile (distilled,
autoclaved) water and refrigerated at 4 ◦C for three weeks until inoculation. Prior to
inoculation, hemocytometer counts followed by serial dilutions in sterile water were used
to obtain a concentration of 1,000 spores per mL for each of the three fungal species. We
did not conduct spore viability stain assays; however, spore storage time was short (Bruns et
al., 2009), and handling was consistent with other studies using spore inoculum from these
species (Kennedy & Bruns, 2005; Kennedy & Peay, 2007; Kennedy, Peay & Bruns, 2009; Peay
et al., 2012), so we expected a high proportion of viable spores in the inoculation slurries.

We inoculated the P. muricata seedlings with zero, one, two, or three fungal species in all
possible combinations. We randomly assigned five seedlings to each treatment group (for
a total of 5 seedlings × 7 treatments + 1 control = 40 seedlings). Each seedling received
a total of 3-mL of inoculum. For control (non-mycorrhizal) seedlings, this consisted of
3-mL of sterile water. Seedlings inoculated with EMF received 1-mL of inoculum per fungal
species (so that seedlings in the single-fungus treatments received 1-mL of spore inoculum
and 2-mL of distilled water). Thus, seedlings in the three-species treatment received a total
of 3,000 spores (1,000 per species).

Seedlings were maintained in a greenhouse at Stanford University for five months
between inoculation and harvest. This experimental duration was chosen because it
approximates the length of the main growth and fruiting season of EMF in PRNS, and
because previous greenhouse studies of P. muricata seedlings and their EMF have been of
similar duration (Kennedy & Bruns, 2005; Kennedy & Peay, 2007; Peay, Garbelotto & Bruns,
2009; Kennedy, Peay & Bruns, 2009). At harvest, each seedling’s root system was separated
from the shoot at the root collar. The root system was washed clear of adhering soil
using tap water. Roots were then cut into 3-cm segments, homogenized, and a subset was
examined under a dissecting microscope. This entire subset was scored for mycorrhization
using the grid-line intersection method: root segments were randomly arranged over a
1-cm grid, and every grid crossing was scored as mycorrhizal or non-mycorrhizal based on
the presence or absence of fungal hyphae (Giovannetti & Mosse, 1980). Note that, because
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not all of the root system is comprised of fine root tips, total mycorrhization levels are
always <100%. Following examination, eight mycorrhizal root tips from each seedling
were randomly selected for fungal identification, and ten mycorrhizal tips were selected for
enzyme assays. Enzyme assay tips were also collected from control seedlings to establish
non-mycorrhizal baseline activity levels. Following root system processing, seedling root
systems and shoots were dried at 65 ◦C for 48 h and then weighed to determine biomass.

Fungal identification and enzyme assays
We used Sanger sequencing to assign mycorrhizal root tips to species. To extract DNA,
tips were heated in 10 µL Extraction Solution (SKU E7526; Sigma-Aldrich Co. LLC, St.
Louis, MO, USA) for 10 min at 65 ◦C, then 10 min at 95 ◦C, before addition of 10 µL of
Neutralization Solution B (SKU N3910; Sigma-Aldrich Co. LLC). The internal transcribed
spacer (ITS) region of the nuclear ribosomal RNA genes of each root tip was amplified
using the ITS-1F (Gardes & Bruns, 1993) and ITS-4 primers (White et al., 1990) and
sequenced by Beckman Coulter Genomics (Danvers, MA, USA). The resultant sequences
were assigned to one of the three species using the Basic Local Alignment Search Tool
(BLAST, http://blast.ncbi.nlm.nih.gov).

We used fluorimetric assays to quantify the activity levels of five different enzymes:
α-glucosidase (which hydrolyzes starch and glycogen), β-glucosidase (which hydrolyzes
cellobiose), N-acetyl-glucosaminidase (which breaks down chitin), β-xylosidase (which
breaks down xylose), and acid phosphatase (which releases phosphate). Each root tip was
placed in an individual well of a 96-well-screen-bottom plate, and enzyme activities were
sequentially measured according to the protocol outlined in Pritsch et al. (2011). Total
per-tip activity was calculated based on a standard curve using 4-methylumbelliferone and
normalized to surface area calculated using WinRHIZO. Following enzyme assays, DNA
was also extracted from these tips, amplified, sequenced, and used either to assign root tips
to a fungal taxon or to confirm lack of mycorrhization in the controls.

Data analysis
We used single-species treatments to verify the viability of our spore inoculum. In multi-
species treatments, we determined the competitively dominant fungus as the one with
the greatest relative colonization (i.e., greatest proportion of sequences in our randomly
selected set of root tips). To determine differences in enzyme activity and seedling growth,
we compared treatment means using Tukey’s Honestly Significant Difference tests to
correct for multiple hypothesis testing. All statistical calculations were performed using
R (R Core Team, 2014). To quantify variance in enzymatic activity, we used a principal
components analysis to compress data from all five enzymatic assays into two dimensions
for visualization (package bpca; Faria, Demetrio & Allaman, 2016). We then computed
the Euclidean distance between pairs of tips from the same treatments (vegan, function
betadisper; Oksanen et al., 2013) and performed a Tukey’s Honestly Significant Difference
test to compare within-treatment variance.
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Table 1 Principal components analysis of enzymatic activity for single-species treatments.

Principal component axis 1 2 3 4 5

Percent explained 79.84 14.18 4.06 1.11 0.800

Loadings
α-glucosidase −6.61 1.53 −2.10 0.0609 0.775
β-glucosidase −6.36 2.60 1.67 −0.981 0.113
N-acetylglucosaminidase −6.82 1.33 0.965 1.29 −0.289
β-xylosidase −6.77 −1.60 −1.19 −0.437 −1.01
Acid phosphatase −5.21 −4.77 0.91 −0.00634 0.568

RESULTS
Fungal mycorrhization levels
In single-species treatments, all fungi established associations with P. muricata seedlings.
Mycorrhization levels differed by fungal taxon (Fig. 1). Thelephora terrestris had the
highest mycorrhization level of 68.2± 0.00159% (mean± standard deviation) root length
colonized. Rhizopogon occidentalis (23.5 ±0.0952%) and Suillus pungens (27.6 ± 15.6%)
were similar to one another in abundance. No ectomycorrhizal fungi were detected on the
control seedlings.

Hypothesis 1: dominance hierarchy
Our data supported our hypothesized dominance hierarchy: T. terrestris competively
excluded both R. occidentalis and S. pungens. R. occidentalis was competitively dominant
(in terms of root mycorrhization) to, but did not completely exclude, S. pungens in the
two-species treatment containing these fungi (Fig. 1).

Hypothesis 2: dominance-function tradeoff
Enzyme profiles from single-species treatments supported our hypothesis that the least
competitive fungus, S. pungens, would have the highest enzyme activity levels. S. pungens
enzymatic activitywas higher thannon-mycorrhizal control root tips for all five extracellular
enzymes assayed (Fig. 2, yellow bars). In contrast, T. terrestris, the competitively dominant
fungus, had enzymatic activity levels indistinguishable from controls (Fig. 2, blue bars), and
R. occidentalis, of intermediate competitive ability, had elevated enzymatic activity levels
only for α- and β-glucosidase and N-acetyl-glucosaminidase (Fig. 2, red bars). Fungi varied
significantly in their overall enzymatic profiles (Fig. 2F, Table 1; see Fig. S1 for additional
PCA axes). Variance in enzymatic activity was greatest for S. pungens, intermediate for R.
occidentalis, and lowest (equivalent to control tips) for T. terrestris (Fig. 3). In multi-species
treatments, β-Xylosidase and Acid Phosphatase expression levels were elevated for T.
terrestris-infected tips (Fig. 4).

Hypothesis 3: seedling growth response
Seedling aboveground, belowground, and total biomass did not differ by treatment; thus
our third hypothesis was not supported. Overall, we did observe a positive relationship
between mycorrhization level and seedling biomass (Fig. 5).
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Figure 1 Mycorrhization levels across experimental treatments. (A) Total mycorrhization was highest
in treatments that included Thelephora terrestris. No fungal contamination was present in the controls. (B–
C) Fungi exhibited a dominance hierarchy, with T. terrestris as the only fungus present in multi-species
treatments, and Rhizopogon occidentalis suppressing Suillus pungens growth in the two-species combina-
tion treatment. Bar heights indicate means across seedlings within a treatment group; whiskers give stan-
dard error. Letters indicate statistically significant differences in mean (Tukey’s HSD, P < 0.05). Col-
ors represent species: Red, R. occidentalis, yellow, S. pungens, and blue, T. terrestris; color blends represent
species combinations (e.g., green, S. pungens+ T. terrestris in (A), where total mycorrhization is plotted).

DISCUSSION
In this study, we present an experimental test for competition-function tradeoffs across
three genera of ectomycorrhizal fungi (EMF). We observed a clear competitive dominance
hierarchy among the EMF that was inversely related to their extracellular enzymatic
activities. Specifically, the most competitively dominant EMF, Thelephora terrestris, had
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Figure 2 Enzyme activities of root tips colonized by the three fungal taxa compared with control (non-
mycorrhizal) root tips.Data are from single-fungus inoculations (i.e., Treatment= R, S, or T). Across the
five enzymes tested, only Suillus pungens-associated root tips showed consistently elevated activity relative
to nonmycorrhizal tips (A–E Tukey’s HSD, P < 0.05). Association with Rhizopogon occidentalis elevated
α- and β-glucosidase and N-acetyl-glucosaminidase enzyme activities relative to control tips. A principal
component analysis (F) revealed that fungi differed in their enzymatic assays (PERMANOVA, P < 0.05).

Figure 3 Variance in fungal enzymatic activity by species measured as Euclidean distance across all
five enzymatic assays.Data are from single-fungus inoculations (as in Fig. 2). S. pungens had the great-
est variation in enzymatic function, R. occidentalis intermediate, and T. terrestris the least (Tukey’s HSD,
P < 0.05).
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Figure 4 Changes in enzyme activity by fungal associate and treatment.N-acetyl-glucosaminidase ac-
tivity was elevated for Rhizopogon occidentalis-associated root tips when in isolation relative to competi-
tion with Suillus pungens (C). β-xylosidase and acid phosphatase activities were elevated for Thelephora
terrestris-associated tips when in competition with R. occidentalis (D–E). Bar heights indicate means across
root tips within a treatment group (measured in pmol mm−2 min−1); whiskers give standard error. Letters
indicate statistically significant differences in mean within species by treatment (Tukey’s HSD, P < 0.05).
Colors represent treatments: red, R. occidentalis; yellow, S. pungens; and blue, T. terrestris; color blends
represent species combinations (e.g., green, S. pungens+ T. terrestris).

enzymatic activities indistinguishable from non-mycorrhized tree roots, whereas the
competitively inferior Suillus pungens exhibited elevated enzymatic activity across all
five enzymes assayed. A number of studies have previously documented differences in
enzymatic activity profiles across (Courty et al., 2005; Courty et al., 2006; Buée et al., 2007;
Courty, Franc & Garbaye, 2010; Kipfer et al., 2012; Velmala et al., 2013; Walker, Ward &
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Figure 5 Relationship between seedling growth andmycorrhization level.Overall, total seedling
biomass was positively correlated with mycorrhization, measured as the proportion of root length with
hyphal structures (A, R2

= 0.433, P < 0.001). This was the result of both above- and belowground effects
of mycorrhization on plant growth: both shoot (B, R2

= 0.213, P < 0.05) and root (C, R2
= 0.558,

P < 0.001) dry weight increased with increasing mycorrhization. Points are color-coded by treatment as in
Figs. 1–3.

Jones, 2016) and within (Jones et al., 2010) fungal genera. These differences, especially when
observed in the field among members of assembled EMF communities, are suggestive
of functional complementarity (Courty et al., 2005; Buée et al., 2007; Jones et al., 2010).
In some cases, e.g., Rhizopogon species, enzymatic activities are disproportionately high
relative to species abundance (Walker et al., 2014). However, to our knowledge, this study
is the first to experimentally link these differences in enzymatic activity with competitive
ability. Because our study, like others that quantify species-specific enzymatic activity, used
root tips to obtain fungal tissues, our enzymatic data are representative only of root-tip
associated exoenzyme activities, which may be different than expression levels in other
parts of the soil (e.g., at the edges of hyphal extent furthest from the host tree where fungi
are foraging for nutrients, or at local hotspots of resource availability in the heterogeneous
soil environment) (Wright et al., 2005; Liao et al., 2014). Thus, much work remains to be
done to determine the whole organism’s functional potential.

That T. terrestris was the most competitively dominant EMF in our study was not
surprising given its proclivity for vigorous growth under greenhouse conditions (Mason et
al., 1983; Velmala et al., 2013). However, S. pungens and R. occidentalis are key community
members on Pinus muricata in the field, including at Point Reyes National Seashore where
the seeds, soils, and fungal spores used in this study were collected (Peay et al., 2007). All
three species are capable of colonizing seedlings through spore dispersal, with S. pungens
and R. occidentalis more consistently observed on small tree islands than T. terrestris
(Peay et al., 2007). R. occidentalis colonizes through generation of a long-lived spore bank
(Bruns et al., 2009), while S. pungens and T. terrestris are the two most prolific aerial spore
dispersers in the system (Peay et al., 2012). Our competitive dominance hierarchy, which
is the inverse of this dispersal hierarchy, suggests a competition-colonization tradeoff
among these taxa similar to that observed by Kennedy et al. (2011), at least in terms of
root system abundance. While EMF may compete in other ways, such as by competing
for nutrient and water resources in the soil or by competing for plant carbon resources
(delivery of which may vary by root tip occupancy), in this case the observed complete
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exclusion of other EMF by T. terrestris suggests strong competitive dominance. However,
in cases where exclusion is incomplete measurements of carbon and nitrogen acquisition
may be necessary to determine competitive dominance. Although competitively excluded
from seedling root systems by T. terrestris in our study, the persistence of S. pungens and R.
occidentalis in the field (at least through the first decade of succession) could be the result
of several mechanisms. First, less competitive fungi may be maintained through active
partner maintenance. This could be the case if trees allocate carbon to their fungal partners
in proportion to their partners’ provision of resources (Hoeksema & Kummel, 2003), which
would likely be greater for highly enzymatically active EMF like S. pungens. Second, trees
with larger root systems are likely to support a greater diversity of EMF than the seedlings
in our study (Nara et al., 2003). Third, competition among EMF can be context dependent
(Kennedy, Peay & Bruns, 2009), and while T. terrestris is dominant under greenhouse
conditions, this is unlikely to be the case for all biotic and abiotic conditions.

Greenhouse growth conditions may also be responsible for the homogeneity of the
seedling growth response. Although Kipfer et al. (2012) found that the most enzymatically
active fungus in their study, Suillus granulatus, had a positive effect on seedling growth,
we did not observe statistically significant differences in growth by treatment in our study.
In part, this was likely due to the homogeneous, high-quality soil environment created by
autoclaving the experimental soils, which can release substantial amounts of nutrients into
plant-accessible pools, reducing the impact of EMF on seedling growth (Peay, Bruns &
Garbelotto, 2010) and plant carbon allocation to EMF (Hobbie, 2006). Other studies have
found no relationship between EMF competitiveness and seedling growth (Kennedy, Peay
& Bruns, 2009). Perhaps, at least at the early seedling stage, growth effects are obscured by
conflicting mechanisms. ‘‘High-quality’’ partners like S. pungens may be more expensive
thanks to the energetic demands of producing extracellular enzymes; this additional carbon
cost may negate any benefits to the host seedling, particularly in nutrient-rich soils.

Although T. terrestris was the only fungus observed by harvest time in all treatments
that included it as a source of inoculum, we did observe reductions in its mycorrhization
level and increases in some of its enzymatic activities in multi-species treatments relative
to monoculture. These differences may be due to a time lag in competitive displacement of
R. occidentalis similar to that observed by Lilleskov & Bruns (2003) when R. occidentalis
was in competition with Tomentella sublilacina (like T. terrestris, a member of the
Thelephoraceae), and/or shifts in T. terrestris enzymatic function induced by the presence
of other EMF. Further experimental manipulation of community composition is likely to
elucidate the roles of such mechanisms and clarify the role of fungal identity in mutualism
function.

We also observed differences in absolute mycorrhization levels among the EMF in our
single-species treatments. By ourmetric (percent of total root length colonized),T. terrestris
hadmycorrhization levels that were almost double those of the other EMF. In part, this may
be due to different root growth forms associated with R. occidentalis and S. pungens, which
tend to induce the production of tightly bunched clusters of root tips (HV Moeller & KG
Peay, pers. obs., 2011; see also images in the DEtermination of EctoMYcorrhizae database,
http://www.deemy.de/) whose prevalence would be underestimated by our grid-intersect
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sampling method. In contrast, T. terrestris exhibits greater spatial extent along the length
of fine roots, and the formation of root tip clusters is not observed. While this difference
in mycorrhization may also be due to interspecific differences in spore inoculum viability
or rates of vegetative spread across root systems, prior studies have observed similar
levels of mycorrhization for the three genera we studied (Browning & Whitney, 1993;
Kennedy & Bruns, 2005). Indeed, Kennedy & Bruns (2005) observed∼30%mycorrhization
levels for Rhizopogon species within two months of inoculation. The evolutionary and
ecological reasons for these differences in colonization strategy remain unclear, but a fuller
understanding of EMF spatial extent and enzymatic function beyond the plant’s immediate
root zone will likely shed light on these questions.
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